Unfitted finite element methods have emerged as a popular alternative to classical finite element methods for the solution of partial differential equations and allow modeling arbitrary geometries without the need for a boundary-conforming mesh. On the other hand, the efficient solution of the resultant system is a challenging task because of the numerical ill-conditioning that typically entails from the formulation of such methods. We use an adaptive geometric multigrid solver for the solution of the mixed finite cell formulation of saddle-point problems and investigate its convergence in the context of the Stokes and Navier-Stokes equations. We present two smoothers for the treatment of cutcells in the finite cell method and analyze their effectiveness for the model problems using a numerical benchmark. Results indicate that the presented multigrid method is capable of solving the model problems independently of the problem size and is robust with respect to the depth of the grid hierarchy.
翻译:不适合的有限元素方法已成为解决部分差异方程式的典型的有限元素方法的流行替代方法,并允许在不需要符合边界的网格的情况下进行任意的地理比例建模。另一方面,由于制定这些方法通常会产生数字上的缺陷,因此,由此产生的系统的有效解决方案是一项具有挑战性的任务。我们使用一个适应性几何多格求解器来解决混合的固定峰值细胞配制问题,并在斯托克斯和纳维尔-斯托克斯方程式中调查其趋同情况。我们用两个平滑器用于用限定单元格法处理切除细胞,并用数字基准分析其对于模型问题的效果。结果显示,所提出的多格方法能够解决与问题大小无关的模型问题,并且能够在网格等级深度方面保持稳健。