Random eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a simple multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. An accompanying paper [Gilbert and Scheichl, 2021], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results.
翻译:随机电子值问题是量化物理科学和工程若干应用的不确定性的有用模型,例如结构振动分析、核反应堆或光晶体结构的临界度、核反应堆或光晶体结构的临界度等。在本文件中,我们提出了一个简单的多层次准蒙卡罗(MLQMC)方法,以近似于对椭圆性电子值问题最小值的预期值的预期值的简单多层次准蒙卡罗(MLQMC)方法。错误分析中的一个关键步骤要求同时对作为可计算式随机和空间参数系列扩展的系数进行分解。MLQMC算法基于空间域的分解等级和随机参数参数域的分解。为了接近预期,我们采用了随机改变的拉特克规则。本文主要致力于对这一算法的错误进行严格分析。错误分析中的一个关键步骤要求同时对静态和空间变量的混合衍生物进行界限。所附文件[Gilbert和Scheichl, 2021],侧重于MLQMC算法的实际扩展,以提高和数字结果。