The balancing domain decomposition methods (BDDC) are originally introduced for symmetric positive definite systems and have been extended to the nonsymmetric positive definite system from the linear finite element discretization of advection-diffusion equations. In this paper, the convergence of the GMRES method is analyzed for the BDDC preconditioned linear system from advection-diffusion equations with the hybridizable discontinuous Galerkin (HDG) discretization. Compared to the finite element discretizations, several additional norms for the numerical trace have to be used and the equivalence between the bilinear forms and norms needs to be established. For large viscosity, if the subdomain size is small enough, the number of iterations is independent of the number of subdomains and depends only slightly on the sudomain problem size. The convergence deteriorates when the viscosity decreases. These results are similar to those with the finite element discretizations. Moreover, the effects of the additional primal constraints used in the BDDC algorithms are more significant with the higher degree HDG discretizations. The results of two two-dimensional examples are provided to confirm our theory.


翻译:平衡域分解法(BDDCC)最初是针对对称正确定系统采用的,后来又从对称正分解方程式的线性有限分解元素的线性分解分解成非对称正确定系统。在本文件中,对BDDC先决条件的线性系统GMRES方法的趋同性进行了分析,从可混合的不连续加列尔金(HDG)分解的反向分解方程式(BDDC)的反向分解方程式(BDDC)中分析了平衡域分解法(BDDC)的趋同性方法(BDDC)的趋同性方法(BDDC)的趋同性方法(BDDC)的分解分解法(BDDC)的分解法(BDDC)的分解分解法(BDDDC)的分解法(BDDDC)的分解法(BDDDC)的分解法(BDDC)的分解法(BDDDC)的有限分解分解分解分解法(B)的分解法(BDDDDDDDC)的分解法(B)的分解法(BDDDDDC)的分解法(B)的分解法(BDDDDDDDC)的分解法(B)的分解法(B)的分解法(B)最初制,与非分解法(BDDDDG)的分解法(B)的分解法(B)的分解法(B)的分解法(B)的分解法(B)的分解法(B)的分解法(B)的分解法(B)的分解法(BDG)最初制,C)最初性方法)最初性方法)的分解法(BDDG)最初论(B)最初)最初)最初性方法(B)最初论(B)最初数法(BDG)的数法(B)的数法(B)的数法(B)的另外若干法(BC)的数法(BDG)的数法(BDG

0
下载
关闭预览

相关内容

图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
专知会员服务
44+阅读 · 2020年12月18日
【ECML/PKDD20教程】图表示学习与应用,200页ppt
专知会员服务
91+阅读 · 2020年10月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
VIP会员
相关VIP内容
图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
专知会员服务
44+阅读 · 2020年12月18日
【ECML/PKDD20教程】图表示学习与应用,200页ppt
专知会员服务
91+阅读 · 2020年10月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Top
微信扫码咨询专知VIP会员