Over the last ten years, results from [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], and [Melenk-Parsania-Sauter, 2013] decomposing high-frequency Helmholtz solutions into "low"- and "high"-frequency components have had a large impact in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with an impedance boundary condition. Using the Helffer-Sj\"ostrand functional calculus, this paper proves analogous decompositions for scattering problems fitting into the black-box scattering framework of Sj\"ostrand-Zworski, thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable obstacles all at once. In particular, these results allow us to prove new frequency-explicit convergence results for (i) the $hp$-finite-element method applied to the variable coefficient Helmholtz equation in the exterior of a Dirichlet obstacle, when the obstacle and coefficients are analytic, and (ii) the $h$-finite-element method applied to the Helmholtz penetrable-obstacle transmission problem.
翻译:在过去十年中,[Melenk-Suter,2010年]、[Melenk-Suter,2011年]、[Esterhazy-Melenk,2012年]和[Merenk-Parsania-Suter,2013年]将高频Helmholtz溶液分解成“低”和“高”频率方程式的结果,对Helmholtz方程式的数值分析产生了重大影响。这些结果证明是:在Drichlet障碍或带有阻力边界传输条件的内域外端,常态的Helmholtz等方程式效率不变。使用Helfer-Sj\'ostrania-Sautern-Sauter和功能性计算器,本文证明了将问题分散到Sj\\'ostrand-Zworski黑盒散射框架中的类似分解位置,从而覆盖了Helmholtz问题和可变系数、可耐性障碍,以及可穿障碍。特别是,这些结果使我们能够将新的频率-roblex-rix-rut-rix-rix-rix-ration-ration-ration-ration-ration-revexlus the dexmexmexmexmexmexmexmexmlational (i) exmex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-exmlexmalgalgaldalgal-i (i)