This paper presents a new parameter free partially penalized immersed finite element method and convergence analysis for solving second order elliptic interface problems. The optimal approximation capabilities of the immersed finite element space is proved via a novel new approach that is much simpler than that in the literature. A new trace inequality which is necessary to prove the optimal convergence of immersed finite element methods is established on interface elements. Optimal error estimates are derived rigorously even though the curved interface is approximated by line segments. The new method and analysis have also been extended to problems with variable coefficients. Numerical examples are also provided to confirm the theoretical analysis and efficiency of the new method.


翻译:本文为解决第二顺序椭圆界面问题提供了一种新的无部分处罚的浸入有限要素新参数方法和趋同分析。浸入有限要素空间的最佳近似能力通过比文献中简单得多的新颖方法得到证明。在界面要素上建立了新的追踪不平等,这是证明浸入有限要素方法最佳趋同所必需的。最佳误差估计是严格得出的,即使曲线界面以线段相近。新的方法和分析还扩大到可变系数的问题。还提供了数字实例,以证实新方法的理论分析和效率。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
还在修改博士论文?这份《博士论文写作技巧》为你指南
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
L2正则化视角下的对抗样本
论智
3+阅读 · 2018年7月8日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
L2正则化视角下的对抗样本
论智
3+阅读 · 2018年7月8日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员