Understanding the dynamics of functional brain connectivity patterns using noninvasive neuroimaging techniques is an important focus in human neuroscience. Vector autoregressive (VAR) processes and Granger causality analysis (GCA) have been extensively used to examine functional brain connectivity. While high-resolution neuroimage data are routinely collected now-a-days, the statistics literature on VAR models has remained heavily focused on small-to-moderate dimensional problems and single subject data. Motivated by these issues, we develop a novel Bayesian semiparametric VAR model that addresses the daunting dimensionality challenges by structuring the VAR coefficients matrices as a three-way tensor and then applying a tensor decomposition. A novel sparsity-inducing shrinkage prior allows data-adaptive dimension reduction, including automated lag selection. We also extend the approach to a novel mixed model for multi-subject neuroimaging data, capturing common brain connectivity patterns via shared fixed effects while also accommodating subject specific heterogeneity via random effects. Finally, GCA is performed via a posterior false discovery rate control procedure. We design a Markov chain Monte Carlo algorithm for posterior computation. We evaluate the methods' empirical performances through synthetic experiments. Applied to our motivating functional magnetic resonance imaging study, the proposed approach allows the directional connectivity of brain networks to be studied in fine detail, revealing meaningful but previously unsubstantiated cortical connectivity patterns.


翻译:利用非侵入性神经成像技术了解功能性大脑连通模式的动态,这是人类神经科学的一个重要焦点。病媒自反(VAR)过程和引因分析(GCA)已被广泛用于检查功能性大脑连通性。虽然现在每天例行收集高分辨率神经图像数据,但VAR模型的统计文献仍然大量侧重于小到中度的尺寸问题和单一主题数据。受这些问题的驱动,我们开发了一个新颖的Bayesian半参数VAR模型,通过将VAR系数矩阵结构成三路高压,然后应用高压分解法来应对令人生畏的维度挑战。一种新的宽度诱导缩缩型模型,以前允许数据-适应性尺寸的减少,包括自动滞后选择。我们还将这种方法推广到多主题神经成像数据的新混合模型,通过共同固定效应捕捉共同的大脑连通模式,同时通过随机效应容纳特定主题的异质性。最后,GCA通过在我们的远端发现率矩阵矩阵矩阵上,然后采用高压分流法,我们设计了一种功能性磁带性磁感化分析模型,从而进行磁性磁性磁性分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月11日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员