The hypothesis of error invariance is central to the instrumental variable literature. It means that the error term of the model is the same across all potential outcomes. In other words, this assumption signifies that treatment effects are constant across all subjects. It allows to interpret instrumental variable estimates as average treatment effects over the whole population of the study. When this assumption does not hold, the bias of instrumental variable estimators can be larger than that of naive estimators ignoring endogeneity. This paper develops two tests for the assumption of error invariance when the treatment is endogenous, an instrumental variable is available and the model is separable. The first test assumes that the potential outcomes are linear in the regressors and is computationally simple. The second test is nonparametric and relies on Tikhonov regularization. The treatment can be either discrete or continuous. We show that the tests have asymptotically correct level and asymptotic power equal to one against a range of alternatives. Simulations demonstrate that the proposed tests attain excellent finite sample performances. The methodology is also applied to the evaluation of returns to schooling and the effect of price on demand in a fish market.
翻译:误差的假设是工具变量文献的核心。 这意味着模型的错误术语在所有潜在结果中都是相同的。 换句话说, 这个假设意味着模型的错误术语在所有科目中的处理效果都是不变的。 它允许将工具变量估计数解释为对研究的全体人口的平均处理影响。 如果这一假设不成立, 工具变量估算者的偏差可能大于天真估计者对内源性视视的偏差。 本文为假设误差的假设开发了两个测试, 当治疗是内源, 一个工具变量是可用的, 模型是可分离的。 第一个测试假设潜在的结果在所有科目中都是线性结果, 并且是计算简单的。 第二个测试是不对等的, 并依赖于Tikhonov 的正规化。 治疗可以是离散的, 也可以是连续的。 我们显示, 测试的水平与一系列替代方法相比, 具有与一等同的偏差力。 模拟显示, 拟议的测试达到了极差的样本性能。 方法还用于评估返回的学校教育和鱼类价格对市场的影响。