Normalizing flows are deep generative models that allow efficient likelihood calculation and sampling. The core requirement for this advantage is that they are constructed using functions that can be efficiently inverted and for which the determinant of the function's Jacobian can be efficiently computed. Researchers have introduced various such flow operations, but few of these allow rich interactions among variables without incurring significant computational costs. In this paper, we introduce Woodbury transformations, which achieve efficient invertibility via the Woodbury matrix identity and efficient determinant calculation via Sylvester's determinant identity. In contrast with other operations used in state-of-the-art normalizing flows, Woodbury transformations enable (1) high-dimensional interactions, (2) efficient sampling, and (3) efficient likelihood evaluation. Other similar operations, such as 1x1 convolutions, emerging convolutions, or periodic convolutions allow at most two of these three advantages. In our experiments on multiple image datasets, we find that Woodbury transformations allow learning of higher-likelihood models than other flow architectures while still enjoying their efficiency advantages.


翻译:这种优势的核心要求是,在构建这些功能时,可以高效率地进行反转,并且可以有效地计算函数Jacobian的决定因素。研究人员已经引入了各种这种流动操作,但其中很少有人允许在不产生大量计算成本的情况下在变量之间进行丰富的互动。在本文中,我们引入了Woodbury变异,通过Woodbury矩阵特性和通过Sylvester的决定因素特性进行高效的决定因素计算,从而实现高效的可视性。与在最先进的正常流动中使用的其他操作相比,Woodbury变异使得(1) 高维互动,(2) 高效取样和(3) 高效的可能性评估。其他类似的操作,如1x1演进、新兴演进或周期演进,最多允许这三种优势中的两种。在我们关于多个图像数据集的实验中,我们发现Woodbury变异允许学习比其他流动结构更相似的模型,同时仍然享有效率优势。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员