In this paper, we study upper bounds on the minimum length of frameproof codes introduced by Boneh and Shaw to protect copyrighted materials. A $q$-ary $(k,n)$-frameproof code of length $t$ is a $t \times n$ matrix having entries in $\{0,1,\ldots, q-1\}$ and with the property that for any column $\mathbf{c}$ and any other $k$ columns, there exists a row where the symbols of the $k$ columns are all different from the corresponding symbol (in the same row) of the column $\mathbf{c}$. In this paper, we show the existence of $q$-ary $(k,n)$-frameproof codes of length $t = O(\frac{k^2}{q} \log n)$ for $q \leq k$, using the Lov\'asz Local Lemma, and of length $t = O(\frac{k}{\log(q/k)}\log(n/k))$ for $q > k$ using the expurgation method. Remarkably, for the practical case of $q \leq k$ our findings give codes whose length almost matches the lower bound $\Omega(\frac{k^2}{q\log k} \log n)$ on the length of any $q$-ary $(k,n)$-frameproof code and, more importantly, allow us to derive an algorithm of complexity $O(t n^2)$ for the construction of such codes.
翻译:在本文中,我们研究了Boneh 和 Shaw 为保护版权材料而采用的防框架代码最低长度的上限。 美元(k)n)美元(k)美元(n)美元(t)美元(t)美元(t)美元(t)美元(n)美元(t)美元(n)美元(t)美元(t)美元(n)美元(n)美元(n)美元(n)美元)(n)美元(t)(n)美元(n)美元(t)(n)美元(n)美元(n)美元(n)(n)美元(n)美元(n)(n)美元(n)(n)美元(n)美元(n)(n)美元(n)(n)(n)美元(n)(n)美元(n)(n)(g)(k)美元(美元)(leq)(k)美元(美元)(美元(美元)(t(n)(n)(k)(n)(k)(n)(k)(k)(k)(k)(k)(n)美元(n)(k)(n)(n)(n)美元)(n)(n)(n)(n)(k)(k)(n)(k)(k)(x)(x)(x)(x)美元)(x)美元)(x)(x)(x)美元)(n)(x(x(x(x(x(x(x(x)美元)美元)(x)(x(x)(x)美元)美元)(n)(x)(x)(x(x)(x)(x)(x)(x)(x)(x(x))))))(x(x)(x))))))(x(x(x(x(x(x(x)))))))(x)(x)(x(x)(x)(x)))(x(x(x(x)))(x(x))))))))(x(x(x(x(x(x(x))))(x(x(x(x)))))</s>