High dynamic range (HDR) imaging is an indispensable technique in modern photography. Traditional methods focus on HDR reconstruction from multiple images, solving the core problems of image alignment, fusion, and tone mapping, yet having a perfect solution due to ghosting and other visual artifacts in the reconstruction. Recent attempts at single-image HDR reconstruction show a promising alternative: by learning to map pixel values to their irradiance using a neural network, one can bypass the align-and-merge pipeline completely yet still obtain a high-quality HDR image. In this work, we propose a weakly supervised learning method that inverts the physical image formation process for HDR reconstruction via learning to generate multiple exposures from a single image. Our neural network can invert the camera response to reconstruct pixel irradiance before synthesizing multiple exposures and hallucinating details in under- and over-exposed regions from a single input image. To train the network, we propose a representation loss, a reconstruction loss, and a perceptual loss applied on pairs of under- and over-exposure images and thus do not require HDR images for training. Our experiments show that our proposed model can effectively reconstruct HDR images. Our qualitative and quantitative results show that our method achieves state-of-the-art performance on the DrTMO dataset. Our code is available at https://github.com/VinAIResearch/single_image_hdr.


翻译:高动态范围成像(HDR)是现代摄影中不可或缺的技术。传统方法侧重于从多种图像中重建《人类发展报告》,解决图像校正、聚合和音调制图等核心问题,然而,由于重建过程中的幽灵和其他视觉文物而有一个完美的解决方案。最近尝试单图像《人类发展报告》重建显示一个有希望的替代方案:通过使用神经网络将像素值映射到其辐照性中,人们可以绕过连接和合并管道,但仍然获得高质量的《人类发展报告》图像。在这项工作中,我们提出一种监督不力的学习方法,通过学习从单一图像中产生多重曝光,来扭转《人类发展报告》重建的物理图像形成过程。我们的神经网络可以颠倒摄影机对重建像素辐照的反应,然后用一个神经网络网络网络网络网络将多种照射和致幻性细节映射成一个单一的输入图像。为了培训网络,我们建议显示一个代表损失、重建损失和感知性损失,同时适用于《人类发展报告》下和过度曝光的图像组合,因此不需要用《人类发展报告》的定性图像来进行我们的测试。 我们的模型和定量分析方法可以使我们的成绩显示我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员