The focus of this paper is dynamic gesture recognition in the context of the interaction between humans and machines. We propose a model consisting of two sub-networks, a transformer and an ordered-neuron long-short-term-memory (ON-LSTM) based recurrent neural network (RNN). Each sub-network is trained to perform the task of gesture recognition using only skeleton joints. Since each sub-network extracts different types of features due to the difference in architecture, the knowledge can be shared between the sub-networks. Through knowledge distillation, the features and predictions from each sub-network are fused together into a new fusion classifier. In addition, a cyclical learning rate can be used to generate a series of models that are combined in an ensemble, in order to yield a more generalizable prediction. The proposed ensemble of knowledge-sharing models exhibits an overall accuracy of 86.11% using only skeleton information, as tested using the Dynamic Hand Gesture-14/28 dataset


翻译:本文的焦点是在人与机器相互作用的背景下动态姿态识别。 我们提出一个模型, 由两个子网络组成, 一个变压器和一个基于命令中中长期短期神经网络(ON- LSTM) 的常规神经网络(RNN) 。 每个子网络都受过训练, 只能使用骨架连接来完成手势识别任务。 由于每个子网络由于结构的不同而提取了不同类型的特征, 知识可以在子网络之间共享。 通过知识蒸馏, 每个子网络的特征和预测被整合到一个新的聚变分类器中。 此外, 周期学习率可以用来生成一系列模型, 结合成一个组合, 以便产生更普遍的预测。 拟议的知识共享模型组合显示86.11%的总体精确度, 仅使用动态手动14/28数据集测试的骨架信息。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员