Skeleton-based action recognition is an important task that requires the adequate understanding of movement characteristics of a human action from the given skeleton sequence. Recent studies have shown that exploring spatial and temporal features of the skeleton sequence is vital for this task. Nevertheless, how to effectively extract discriminative spatial and temporal features is still a challenging problem. In this paper, we propose a novel Attention Enhanced Graph Convolutional LSTM Network (AGC-LSTM) for human action recognition from skeleton data. The proposed AGC-LSTM can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains. We also present a temporal hierarchical architecture to increases temporal receptive fields of the top AGC-LSTM layer, which boosts the ability to learn the high-level semantic representation and significantly reduces the computation cost. Furthermore, to select discriminative spatial information, the attention mechanism is employed to enhance information of key joints in each AGC-LSTM layer. Experimental results on two datasets are provided: NTU RGB+D dataset and Northwestern-UCLA dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets.


翻译:最近的研究表明,探索骨骼序列的时空特征对于这项任务至关重要。然而,如何有效提取具有歧视性的时空特征仍是一个具有挑战性的问题。在本文件中,我们提议建立一个新的“关注增强动动动图LSTM网络”(AGC-LSTM),以便从骨骼数据中识别人类行动。拟议的AGC-LSTM不仅能够捕捉空间配置和时间动态中的区别性特征,还可以探索空间和时空领域之间的共生关系。我们还提出了一个时间等级结构,以增加AGC-LSTM顶层的可接受时间字段,这提高了学习高层次语义代表的能力,并大大降低了计算成本。此外,为了选择具有歧视性的空间信息,采用了关注机制来增强AGC-LSTM层中关键联合的信息。提供了两个数据集的实验结果:NTU RGB+D数据集和西北-UCLA数据集。比较结果显示我们数据配置方法的有效性,显示我们数据配置方法的状态。

9
下载
关闭预览

相关内容

【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
已删除
将门创投
8+阅读 · 2019年1月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
已删除
将门创投
8+阅读 · 2019年1月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员