This paper tackles one of the most fundamental goals in functional time series analysis which is to provide reliable predictions for future functions. Existing methods for predicting a complete future functional observation use only completely observed trajectories. We develop a new method, called partial functional prediction (PFP), which uses both completely observed trajectories and partial information (available partial data) on the trajectory to be predicted. The PFP method includes an automatic selection criterion for tuning parameters based on minimizing the prediction error, and the convergence rate of the PFP prediction is established. Simulation studies demonstrate that incorporating partially observed trajectory in the prediction outperforms existing methods with respect to mean squared prediction error. The PFP method is illustrated to be superior in the analysis of environmental data and traffic flow data.
翻译:本文涉及功能时间序列分析的最根本目标之一,即为未来功能提供可靠的预测。现有的预测未来完整功能观测的方法只使用完全观测到的轨道。我们开发了一种新的方法,称为部分功能预测(PFP),既使用完全观测到的轨道,又使用预测轨道上的部分信息(可获得的部分数据)。PFP方法包括一个自动选择标准,用于根据预测错误最小化调整参数,并确定了PFP预测的趋同率。模拟研究表明,在预测中纳入部分观测到的轨迹,在平均平方预测错误方面比现有方法要好。PFP方法在分析环境数据和流量数据时显示优。