We present a method for the control of robot swarms which allows the shaping and the translation of patterns of simple robots ("smart particles"), using two types of devices. These two types represent a hierarchy: a larger group of simple, oblivious robots (which we call the workers) that is governed by simple local attraction forces, and a smaller group (the guides) with sufficient mission knowledge to create and maintain a desired pattern by operating on the local forces of the former. This framework exploits the knowledge of the guides, which coordinate to shape the workers like smart particles by changing their interaction parameters. We study the approach with a large scale simulation experiment in a physics based simulator with up to 1000 robots forming three different patterns. Our experiments reveal that the approach scales well with increasing robot numbers, and presents little pattern distortion for a set of target moving shapes. We evaluate the approach on a physical swarm of robots that use visual inertial odometry to compute their relative positions and obtain results that are comparable with simulation. This work lays foundation for designing and coordinating configurable smart particles, with applications in smart materials and nanomedicine.
翻译:我们提出了一个控制机器人群的方法,允许使用两种类型的装置来塑造和转换简单的机器人(“智能粒子”)的形态。这两类机器人代表一个等级:由简单的当地吸引力量管理的更大一组简单、隐蔽的机器人(我们称之为工人),以及具有足够任务知识的更小的一组(指南),以便通过在前者的当地力量上操作来创建和保持一个理想的形态。这个框架利用指南的知识,这些知识通过改变它们的相互作用参数来协调像智能粒子这样的工人的形状。我们在基于物理的模拟器中进行大规模模拟实验,研究该方法有1 000个机器人组成三种不同形态。我们的实验表明,该方法的尺度随着机器人数目的增加而非常优异,对一组目标移动形状也呈现了微小的模式扭曲。我们评估了使用视觉惯性测量法来计算其相对位置并获得与模拟相近的结果的机器人的物理群。这项工作为设计和协调可配置的智能粒子以及应用智能材料和纳米分析奠定了基础。