We propose a generic mechanism for incentivizing behavior in an arbitrary finite game using payments. Doing so is trivial if the mechanism is allowed to observe all actions taken in the game, as this allows it to simply punish those agents who deviate from the intended strategy. Instead, we consider an abstraction where the mechanism probabilistically infers information about what happened in the game. We show that payment schemes can be used to implement any set of utilities if and only if the mechanism can essentially infer completely what happened. We show that finding an optimal payment scheme for games of perfect information is \textsf{P}-complete, and conjecture it to be \textsf{PPAD}-hard for games of imperfect information. We prove a lower bound on the size of the payments, showing that the payments must be linear in the intended level of security. We demonstrate the applicability of our model to concrete problems in distributed computing, namely decentralized commerce and secure multiparty computation, for which the payments match the lower bound asymptotically.
翻译:我们建议了一种通用机制,用以激励任意使用付款的有限游戏的行为。 如果允许该机制观察游戏中采取的所有行动, 这样做是微不足道的, 因为它允许它简单地惩罚那些偏离预定战略的代理人。 相反, 我们考虑的是一种抽象概念, 机制可以概率地推断游戏中发生的事情的信息。 我们显示, 付款计划可以用来实施任何一套公用事业, 前提是该机制基本上能够完全推断出所发生的事情。 我们显示, 为完美信息游戏找到一个最佳支付方案是 \ textsf{P} 完成的, 并且给不完善信息游戏下划线。 我们证明, 付款规模的界限较小, 表明付款必须在预定的安全水平上线性。 我们证明, 我们的模式适用于分布计算中的具体问题, 即分散的商务和安全的多面计算, 其支付与较低约束的不完全匹配。