Grid-free Monte Carlo methods based on the \emph{walk on spheres (WoS)} algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain, nor approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. This paper introduces the \emph{walk on stars (WoSt)} method, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS with \emph{star-shaped} domains; we identify such domains by locating the closest visible point on the geometric silhouette. Overall, WoSt retains many attractive features of other grid-free Monte Carlo methods, such as progressive evaluation, trivial parallel implementation, and logarithmic scaling relative to geometric complexity.


翻译:基于 \ emph{ 走在球体上( WosS) 的无网格蒙特卡洛 方法 算法 解决像 Poisson 等方程式等基本部分差异方程式( PDEs ), 不将问题域分解, 也不在有限的基础上接近功能 。 这种方法避免了在解决方案中别名, 并避免了网状一代的诸多挑战 。 但是对于复杂的几何学问题, 实用的无网格方法基本上局限于基本的 Diriclet 边界条件 。 本文介绍了 \ emph{ 走在恒星上( WoSt) 的算法, 这种方法解决了线性椭圆形 PDE, 以及任意混合的 Neumann 和 Dirichlet 边界条件 。 关键的观点是, 一种能够有效地模拟布朗运动( 以 Neumann 条件为模型), 通过用 \ emph{ star- max} 域取代 WOS 所使用的球, 来识别这些区域 。 我们通过将最接近可见点定位于 的地平面 。 总而言, Wost, 保留了其他无网格 蒙特 方法的许多有吸引力的特性特征特征特征特征特征特征特征特征特征, 例如, 如 渐进评价、 等。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员