Comparing images captured by disparate sensors is a common challenge in remote sensing. This requires image translation -- converting imagery from one sensor domain to another while preserving the original content. Denoising Diffusion Implicit Models (DDIM) are potential state-of-the-art solutions for such domain translation due to their proven superiority in multiple image-to-image translation tasks in computer vision. However, these models struggle with reproducing radiometric features of large-scale multi-patch imagery, resulting in inconsistencies across the full image. This renders downstream tasks like Heterogeneous Change Detection impractical. To overcome these limitations, we propose a method that leverages denoising diffusion for effective multi-sensor optical image translation over large areas. Our approach super-resolves large-scale low spatial resolution images into high-resolution equivalents from disparate optical sensors, ensuring uniformity across hundreds of patches. Our contributions lie in new forward and reverse diffusion processes that address the challenges of large-scale image translation. Extensive experiments using paired Sentinel-II (10m) and Planet Dove (3m) images demonstrate that our approach provides precise domain adaptation, preserving image content while improving radiometric accuracy and feature representation. A thorough image quality assessment and comparisons with the standard DDIM framework and five other leading methods are presented. We reach a mean Learned Perceptual Image Patch Similarity (mLPIPS) of 0.1884 and a Fr\'echet Inception Distance (FID) of 45.64, expressively outperforming all compared methods, including DDIM, ShuffleMixer, and SwinIR. The usefulness of our approach is further demonstrated in two Heterogeneous Change Detection tasks.
翻译:暂无翻译