We present recent finite element numerical results on a model convection-diffusion problem in the singular perturbed case when the convection term dominates the problem. We compare the standard Galerkin discretization using the linear element with a saddle point least square discretization that uses quadratic test functions, trying to control and explain the non-physical oscillations of the discrete solutions. We also relate the up-winding Petrov-Galerkin method and the stream-line diffusion discretization method, by emphasizing the resulting linear systems and by comparing appropriate error norms. Some results can be extended to the multidimensional case in order to come up with efficient approximations for more general singular perturbed problems, including convection dominated models.
翻译:当对流术语主导这一问题时,我们在单扰动情况下,对模型对流扩散问题提出了最近的有限要素数字结果。我们比较了使用线性元素使用标准加列金离散化的线性元素与使用二次测试函数的马鞍点最小平方离散化,试图控制和解释离散溶液的非物理振荡。我们还联系了上风Petrov-Galerkin方法和流线分散化方法,强调由此形成的线性系统,比较适当的误差规范。有些结果可以扩大到多维性案例,以便提出更普遍的单振动性问题的有效近似值,包括以对流为主的模式。