Uncertainty quantification (UQ) tasks, such as sensitivity analysis and parameter estimation, entail a huge computational complexity when dealing with input-output maps involving the solution of nonlinear differential problems, because of the need to query expensive numerical solvers repeatedly. Projection-based reduced order models (ROMs), such as the Galerkin-reduced basis (RB) method, have been extensively developed in the last decades to overcome the computational complexity of high fidelity full order models (FOMs), providing remarkable speedups when addressing UQ tasks related with parameterized differential problems. Nonetheless, constructing a projection-based ROM that can be efficiently queried usually requires extensive modifications to the original code, a task which is non-trivial for nonlinear problems, or even not possible at all when proprietary software is used. Non-intrusive ROMs - which rely on the FOM as a black box - have been recently developed to overcome this issue. In this work, we consider ROMs exploiting proper orthogonal decomposition to construct a reduced basis from a set of FOM snapshots, and Gaussian process regression (GPR) to approximate the RB projection coefficients. Two different approaches, namely a global GPR and a tensor-decomposition-based GPR, are explored on a set of 3D time-dependent solid mechanics examples. Finally, the non-intrusive ROM is exploited to perform global sensitivity analysis (relying on both screening and variance-based methods) and parameter estimation (through Markov chain Monte Carlo methods), showing remarkable computational speedups and very good accuracy compared to high-fidelity FOMs.
翻译:不确定性量化(UQ)任务,例如敏感度分析和参数估计,在处理涉及解决非线性差异问题的输入-输出图时,由于需要反复查询昂贵的数字求解器,因此在处理涉及非线性差异问题的输入-输出图时,需要大量复杂的计算。基于预测的减少订单模型(ROM),如Galerkin降级基础(RB)方法,在过去几十年中已经广泛开发,以克服高度忠诚全序模型(FOM)的计算复杂性,在处理与参数化速度差异问题相关的UQ任务时提供显著的快速加速。然而,建立能够高效查询的基于投影的基于投影-输出的ROM数据,通常需要对原始代码进行广泛的修改,这是一项非线性和非线性问题的任务,或者在使用专利软件时甚至根本不可能使用。为了克服这一问题,最近开发了非侵入性ROM(FOM作为黑箱)的计算方法。 在这项工作中,我们认为,ROM利用正确的或图解的解析性估算,以构建一个基础基础,从基于基于FOM的不连续的筛选非线性直径直径直径直径直径直径直径直径直线性直径直径直径直径直线性直径直径直径直径直径直径直线性直径直径直径直,而对G的计算法分析方法,而在G的计算方法,而对G的G的G的G的G的G的直径直径直直地,G的G的直对地算法分析方法,GRM-直对地,在G的测算法-直路路路路路路路路路路路路路路路至G-直至G-直至G-C-直至G-C-C-C-C-C-C-C-直至G-C-直至G-直至G-直至G-C-C-C-C-C-C-G-G-C-G-C-C-C-C-C-C-C-C-G-C-C-C-C-C-C-C-C-C-C-G-G-G-C-G-C-C-C-C-C-C-C-C-C-C-C-C-