Statistical inference in the presence of nuisance functionals with complex survey data is an important topic in social and economic studies. The Gini index, Lorenz curves and quantile shares are among the commonly encountered examples. The nuisance functionals are usually handled by a plug-in nonparametric estimator and the main inferential procedure can be carried out through a two-step generalized empirical likelihood method. Unfortunately, the resulting inference is not efficient and the nonparametric version of the Wilks' theorem breaks down even under simple random sampling. We propose an augmented estimating equations method with nuisance functionals and complex surveys. The second-step augmented estimating functions obey the Neyman orthogonality condition and automatically handle the impact of the first-step plug-in estimator, and the resulting estimator of the main parameters of interest is invariant to the first step method. More importantly, the generalized empirical likelihood based Wilks' theorem holds for the main parameters of interest under the design-based framework for commonly used survey designs, and the maximum generalized empirical likelihood estimators achieve the semiparametric efficiency bound. Performances of the proposed methods are demonstrated through simulation studies and an application using the dataset from the New York City Social Indicators Survey.


翻译:具有复杂调查数据的骚扰功能的统计推论是社会和经济研究的一个重要专题。吉尼指数、洛伦茨曲线和四分位数共享是常见的例子之一。骚扰功能通常由插头非对称估测器处理,主要的推论程序可以通过两步普遍经验概率法进行。不幸的是,由此得出的推论效率不高,即使通过简单的随机抽样,威尔克斯的正角也断裂了非对称版本。我们建议一种扩大估计方程方法,加上干扰功能和复杂的调查。第二步扩大估计功能符合奈曼或多位性条件,自动处理第一步超位估测器的影响,由此产生的主要利益参数的估测器与第一步方法不尽相同。更重要的是,基于威尔克斯的理论模型为通用调查设计框架的主要利益参数保留了普遍的经验概率。通过模拟分析结果,通过模拟分析结果,通过模拟结果,通过模拟方法,通过模拟分析,得出了最大的普遍经验概率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员