Consider a graph where each of the $n$ nodes is either in state $\mathcal{R}$ or $\mathcal{B}$. Herein, we analyze the \emph{synchronous $k$-Majority dynamics}, where in each discrete-time round nodes simultaneously sample $k$ neighbors uniformly at random with replacement and adopt the majority state among those of the nodes in the sample (breaking ties uniformly at random). Differently from previous work, we study the robustness of the $k$-Majority in \emph{maintaining a $\mathcal{R}$ majority}, when the dynamics is subject to two forms of \emph{bias} toward state $\mathcal{B}$. The bias models an external agent that attempts to subvert the initial majority by altering the communication between nodes, with a probability of success $p$ in each round: in the first form of bias, the agent tries to alter the communication links by transmitting state $\mathcal{B}$; in the second form of bias, the agent tries to corrupt nodes directly by making them update to $\mathcal{B}$. Our main result shows a \emph{sharp phase transition} in both forms of bias. By considering initial configurations in which every node has probability $q \in (\frac{1}{2},1]$ of being in state $\mathcal{R}$, we prove that for every $k\geq3$ there exists a critical value $p_{k,q}^*$ such that, with high probability, the external agent is able to subvert the initial majority either in $n^{\omega(1)}$ rounds, if $p<p_{k,q}^*$, or in $O(1)$ rounds, if $p>p_{k,q}^*$. When $k<3$, instead, no phase transition phenomenon is observed and the disruption happens in $O(1)$ rounds for $p>0$.


翻译:考虑一个图表, 美元节点中的每个元节点都以 $\ mathcal{R} 美元或$\ mathcal{B} 美元形式出现。 在这里, 我们分析 emph{ synchonous $k$k$- Majority 动态 。 在每个离散周期圆节点同时抽样中, 以随机替换的方式同时抽取美元邻居, 并在抽样节点中采用多数状态( 以随机方式打破连接 ) 。 不同于以往的工作, 我们研究 $K$ - Majority 的稳健性, 美元 美元 保持 $\ mathcal{ 美元 美元 。 这里, 当动态受到两种形式的 $memphrick_ 美元周期的制约时, 我们的偏差模式是 $ $_ rqrqrq 。 这样的外部媒介试图通过改变节点之间的交流来破坏最初多数, 并且每回合中可能成功 $ppp p p: 在第一个偏差形式中, 代理尝试通过发送 $\ $_ ral_ rock_ rupde 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月1日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员