Consider a graph where each of the $n$ nodes is either in state $\mathcal{R}$ or $\mathcal{B}$. Herein, we analyze the \emph{synchronous $k$-Majority dynamics}, where in each discrete-time round nodes simultaneously sample $k$ neighbors uniformly at random with replacement and adopt the majority state among those of the nodes in the sample (breaking ties uniformly at random). Differently from previous work, we study the robustness of the $k$-Majority in \emph{maintaining a $\mathcal{R}$ majority}, when the dynamics is subject to two forms of \emph{bias} toward state $\mathcal{B}$. The bias models an external agent that attempts to subvert the initial majority by altering the communication between nodes, with a probability of success $p$ in each round: in the first form of bias, the agent tries to alter the communication links by transmitting state $\mathcal{B}$; in the second form of bias, the agent tries to corrupt nodes directly by making them update to $\mathcal{B}$. Our main result shows a \emph{sharp phase transition} in both forms of bias. By considering initial configurations in which every node has probability $q \in (\frac{1}{2},1]$ of being in state $\mathcal{R}$, we prove that for every $k\geq3$ there exists a critical value $p_{k,q}^*$ such that, with high probability, the external agent is able to subvert the initial majority either in $n^{\omega(1)}$ rounds, if $p<p_{k,q}^*$, or in $O(1)$ rounds, if $p>p_{k,q}^*$. When $k<3$, instead, no phase transition phenomenon is observed and the disruption happens in $O(1)$ rounds for $p>0$.
翻译:考虑一个图表, 美元节点中的每个元节点都以 $\ mathcal{R} 美元或$\ mathcal{B} 美元形式出现。 在这里, 我们分析 emph{ synchonous $k$k$- Majority 动态 。 在每个离散周期圆节点同时抽样中, 以随机替换的方式同时抽取美元邻居, 并在抽样节点中采用多数状态( 以随机方式打破连接 ) 。 不同于以往的工作, 我们研究 $K$ - Majority 的稳健性, 美元 美元 保持 $\ mathcal{ 美元 美元 。 这里, 当动态受到两种形式的 $memphrick_ 美元周期的制约时, 我们的偏差模式是 $ $_ rqrqrq 。 这样的外部媒介试图通过改变节点之间的交流来破坏最初多数, 并且每回合中可能成功 $ppp p p: 在第一个偏差形式中, 代理尝试通过发送 $\ $_ ral_ rock_ rupde 。