We consider the problem of autonomous navigation using limited information from a remote sensor network. Because the remote sensors are power and bandwidth limited, we use event-triggered (ET) estimation to manage communication costs. We introduce a fast and efficient sampling-based planner which computes motion plans coupled with ET communication strategies that minimize communication costs, while satisfying constraints on the probability of reaching the goal region and the point-wise probability of collision. We derive a novel method for offline propagation of the expected state distribution, and corresponding bounds on this distribution. These bounds are used to evaluate the chance constraints in the algorithm. Case studies establish the validity of our approach, demonstrating fast computation of optimal plans.
翻译:我们考虑使用远程传感器网络的有限信息进行自主导航的问题。由于远程传感器的电力和带宽受限,因此我们使用事件触发估计来管理通信成本。我们引入了一种快速有效的基于采样的规划器,它计算与 ET 通信策略耦合的运动规划,以最小化通信成本,同时满足达到目标区域的概率约束和点阵碰撞概率约束。我们推导出一种离线传播期望状态分布的新方法,并相应地得到该分布的界限。这些界限用于评估算法中的机遇约束。案例研究证实了我们的方法的有效性,并演示了快速计算最优规划的能力。