Univariate regression models have rich literature for counting data. However, this is not the case for multivariate count data. Therefore, we present the Multivariate Generalized Linear Mixed Models framework that deals with a multivariate set of responses, measuring the correlation between them through random effects that follows a multivariate normal distribution. This model is based on a GLMM with a random intercept and the estimation process remains the same as a standard GLMM with random effects integrated out via Laplace approximation. We efficiently implemented this model through the TMB package available in R. We used Poisson, negative binomial (NB), and COM-Poisson distributions. To assess the estimator properties, we conducted a simulation study considering four different sample sizes and three different correlation values for each distribution. We achieved unbiased and consistent estimators for Poisson and NB distributions; for COM-Poisson estimators were consistent, but biased, especially for dispersion, variance, and correlation parameter estimators. These models were applied to two datasets. The first concerns a sample from 30 different sites collected in Australia where the number of times each one of the 41 different ant species was registered; which results in an impressive 820 variance-covariance and 41 dispersion parameters estimated simultaneously, let alone the regression parameters. The second is from the Australia Health Survey with 5 response variables and 5190 respondents. These datasets can be considered overdispersed by the generalized dispersion index. The COM-Poisson model overcame the other two competitors considering three goodness-of-fit indexes. Therefore, the proposed model is capable of dealing with multivariate count data, and measuring any kind of correlation between them taking into account the effects of the covariates.
翻译:单变量回归模型有丰富的计算数据文献。 然而, 多变量计算数据的情况并非如此 。 因此, 我们展示了多变量通用线性混合模型框架, 涉及多变量响应的一组特性, 通过随机效果测量它们之间的关联性, 在多变量正常分布之后, 以随机拦截和估算过程的 GLMM 为基础。 这个模型与标准 GLMM 一样, 随机效果通过 Laplace 近点整合。 我们通过 R 提供的 TMB 套件有效地应用了这个模型 。 我们使用了 Poisson 、 负双流( NB ) 和 COM- Poisson 分布。 为了评估估量的多变量属性, 我们进行了模拟研究, 考虑了四个不同的样本大小和三个不同的分布值。 我们为 Poisson 和 NBOB 分布实现了公正和一致的估算值; COM- Poisson 估测算器是一致的, 但这些差异、 差异和相关参数的参数。 这些模型可以应用到两个数据集 。 第一个是来自30个不同地点的样本, 在澳大利亚收集的模型, 排序中, 5种变量的变量的精确变量的变量的计算结果是不同的数据, 。