项目名称: 动力系统周期解与稳定性研究

项目编号: No.10971139

项目类型: 面上项目

立项/批准年度: 2010

项目学科: 数理科学和化学

项目作者: 韩茂安

作者单位: 上海师范大学

项目金额: 28万元

中文摘要: 本项目的研究对象主要涉及平面自治系统以及时滞与脉冲等微分系统所确定的动力系统,研究的主要问题是平面系统极限环的分支理论、时滞与脉冲微分系统周期解的存在性、分支理论及其稳定性,我们将:1.深入和系统地研究哈密顿系统的同宿环与异宿环在扰动之下极限环的分支问题和一般平面多项式的极限环个数;2.建立非光滑系统周期解分支和稳定性判定的新理论;3.研究时滞与脉冲时滞微分系统周期解存在性和几类偏泛函微分方程的行波解问题,并给出解析判定准则;4.给出中立型脉冲时滞微分系统解的存在唯一性、正则性和稳定性较为深入的结果;5.研究高阶微分方程和具Laplace算子的微分方程的边值问题,以及一些出现于物理、生物数学、神经网络、控制等领域实际模型解的稳定性和同步。以上这些问题是动力系统学科的重要问题,我们将引进新的研究方法,获得新的结果,建立新的理论。

中文关键词: 周期解;极限环;分支;稳定性;

英文摘要:

英文关键词: periodic solution;limit cycle;bifurcation;stability;

成为VIP会员查看完整内容
0

相关内容

【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
专知会员服务
32+阅读 · 2021年9月14日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
171+阅读 · 2021年7月27日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
专知会员服务
65+阅读 · 2021年1月28日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
87+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
泡泡机器人SLAM
179+阅读 · 2019年5月22日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
各种相似性度量及Python实现
机器学习算法与Python学习
11+阅读 · 2017年7月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
【经典书】随机矩阵理论与无线网络,186和pdf
专知会员服务
49+阅读 · 2021年12月21日
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
专知会员服务
32+阅读 · 2021年9月14日
【干货书】计算机科学家的数学,153页pdf
专知会员服务
171+阅读 · 2021年7月27日
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
135+阅读 · 2021年3月5日
专知会员服务
65+阅读 · 2021年1月28日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
87+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
梯度下降(Gradient Descent)的收敛性分析
PaperWeekly
2+阅读 · 2022年3月10日
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
泡泡机器人SLAM
179+阅读 · 2019年5月22日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
各种相似性度量及Python实现
机器学习算法与Python学习
11+阅读 · 2017年7月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员