Diffusion-based text-to-image generation models trained on extensive text-image pairs have shown the capacity to generate photorealistic images consistent with textual descriptions. However, a significant limitation of these models is their slow sample generation, which requires iterative refinement through the same network. In this paper, we enhance Score identity Distillation (SiD) by developing long and short classifier-free guidance (LSG) to efficiently distill pretrained Stable Diffusion models without using real training data. SiD aims to optimize a model-based explicit score matching loss, utilizing a score-identity-based approximation alongside the proposed LSG for practical computation. By training exclusively with fake images synthesized with its one-step generator, SiD equipped with LSG rapidly improves FID and CLIP scores, achieving state-of-the-art FID performance while maintaining a competitive CLIP score. Specifically, its data-free distillation of Stable Diffusion 1.5 achieves a record low FID of 8.15 on the COCO-2014 validation set, with a CLIP score of 0.304 at an LSG scale of 1.5, and a FID of 9.56 with a CLIP score of 0.313 at an LSG scale of 2. Our SiD-LSG code and distilled one-step text-to-image generators are available at https://github.com/mingyuanzhou/SiD-LSG


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员