A new projection method for a generic two-fluid model is presented in this work. To be specific, it is shown that the projection method for solving single-phase variable density incompressible flows or compressible flows can be extended to the case of viscous compressible two-fluid flows. The idea relies on the property that the single pressure $p$ can be uniquely determined by the products of volume fractions and densities $\phi_k \rho_k$ of the two fluids, respectively. Moreover, a suitable assignment of the intermediate step variables is necessary to maintain the stability. The energy stability for the proposed numerical scheme is proved and the first order convergence in time is justified by three numerical tests.
翻译:本文介绍了一种通用双流模型的新预测方法。 具体地说, 显示解决单阶段变量密度不压缩流或压缩流的预测方法可以扩展至可压缩双流流的粘性。 这个想法依赖于以下属性:单压力$p$可以分别由两种液体的体积分数和密度$\phi_ k\rho_k$的产品单独确定。 此外, 适当分配中间步骤变量对于维持稳定性是必要的。 拟议的数字方法的能源稳定性得到了证明,而第一个顺序在时间上的趋同通过三次数字测试是有道理的。