Genetic algorithms have unique properties which are useful when applied to black box optimization. Using selection, crossover, and mutation operators, candidate solutions may be obtained without the need to calculate a gradient. In this work, we study results obtained from using quantum-enhanced operators within the selection mechanism of a genetic algorithm. Our approach frames the selection process as a minimization of a binary quadratic model with which we encode fitness and distance between members of a population, and we leverage a quantum annealing system to sample low energy solutions for the selection mechanism. We benchmark these quantum-enhanced algorithms against classical algorithms over various black-box objective functions, including the OneMax function, and functions from the IOHProfiler library for black-box optimization. We observe a performance gain in average number of generations to convergence for the quantum-enhanced elitist selection operator in comparison to classical on the OneMax function. We also find that the quantum-enhanced selection operator with non-elitist selection outperform benchmarks on functions with fitness perturbation from the IOHProfiler library. Additionally, we find that in the case of elitist selection, the quantum-enhanced operators outperform classical benchmarks on functions with varying degrees of dummy variables and neutrality.
翻译:基因算法具有独特的特性, 适用于黑盒优化 。 使用选择、 交叉和突变操作器, 可以在不需要计算梯度的情况下获得候选解决方案 。 在这项工作中, 我们研究在遗传算法的选择机制内使用量子增强操作器的结果 。 我们的方法将选择过程设定为最小化二进制四进制模型, 用以将人口成员之间的相容和距离进行编码, 我们利用量子整化系统为选择机制取样低能量解决方案 。 我们将这些量子强化算法与包括 OneMax 函数在内的各种黑盒目标函数的经典算法对照为基准, 以及IOHPROfileer 图书馆用于黑盒优化的功能 。 我们观察到, 平均几代中, 将量加精度精度选择操作器与 OneMax 函数的经典模式相比较。 我们还发现, 量加量制选择操作器与IOHPROfilehan 图书馆的精度匹配性调整基准。 此外, 我们发现, 量加量强化精度的精度级级操作器选择功能比标准。