The use of fractional differential equations is a key tool in modeling non-local phenomena. Often, an efficient scheme for solving a linear system involving the discretization of a fractional operator is evaluating the matrix function $x = \mathcal A^{-\alpha} c$, where $\mathcal A$ is a discretization of the classical Laplacian, and $\alpha$ a fractional exponent between $0$ and $1$. In this work, we derive an exponential sum approximation for $f(z) =z^{-\alpha}$ that is accurate over $[1, \infty)$ and allows to efficiently approximate the action of bounded and unbounded operators of this kind on tensors stored in a variety of low-rank formats (CP, TT, Tucker). The results are relevant from a theoretical perspective as well, as they predict the low-rank approximability of the solutions of these linear systems in low-rank tensor formats.
翻译:使用分差方程式是模拟非局部现象的关键工具。 通常, 解决涉及分解一个分解操作员的线性系统的高效计划正在评估矩阵函数$x =\ mathcal A ⁇ \\\\\\\\\ alpha} c$, 美元是古典Laplaceian的分解, 美元是alpha$的分数, 美元是零美元到一美元之间的分数。 在这项工作中, 我们得出了美元(z) =z ⁇ \\\\ alpha} 的指数总和近似值, 准确到$[ $1,\ infty], 并且能够有效地近似这种类型的捆绑和无线性操作员在以各种低级别形式存储的电压器上( CP, TAT, Tuck) 的动作。 其结果从理论上也具有相关性, 因为它们预测了这些线性系统的解决方案在低度温度格式下的低水平的不协调性。