项目名称: 基于多目标进化算法的内建自测试(BIST)优化设计技术研究

项目编号: No.60861003

项目类型: 地区科学基金项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 谈恩民

作者单位: 桂林电子科技大学

项目金额: 24万元

中文摘要: 内建自测试(built-in self-test,BIST)技术是解决高密集成电路测试问题的常见方法,面临着测试时间、测试功耗、矢量长度、故障覆盖率、硬件占用等诸多因素的相互制约。首先,基于多目标遗传算法和加权CA(cellular automata,细胞自动机)测试生成结构进行BIST优化设计,测试对象是ISCAS'85基准电路。验证结果表明,CA结构可以作为BIST较为理想的加权测试生成器,其规则可以采用遗传算法(NSGA-II)进行寻优,达到多目标优化设计的效果。而且由于CA结构的简洁和一致性,这种加权测试生成器在保证了矢量长度、测试功耗等指标得到优化的前提下,其带来的硬件占用率也会是比较小的。进一步地,采用遗传算法(NSGA-II)进行SoC(system on a chip,片上系统)测试的多目标优化设计,给出了优化的模型,并结合有代表性的ITC'02标准电路进行了验证,得到了有价值的二维空间描述的优化测试方案,也证明了多目标遗传算法用于SoC测试设计上的有效性。这些研究工作在技术上是一种集成创新,处于国内先进水平,对于SoC的测试具有较大的理论价值和指导意义。

中文关键词: 内建自测试;遗传算法;多目标优化;NSGA-Ⅱ#65307;SoC

英文摘要: Built-in self-test (BIST) is a popular method in solving the testability of high integrated circuits, however, it is involving of some troubles such as the co-influence of test times,test power consumption,test length,fault coverage,hardware overhead, etc. Firstly,a BIST is designed upon ISCAS'85 benchmark circuits,based on multi-objective genetic algorithm and weighted cellular automata (CA). The experimentation indicated that CA can be used as a perfect test pattern generator of BIST, to bring an optimization on those multi-objectives, with its rules optimized by the genetic algorithm (NSGA-Ⅱ. Also,for the simple architecture of CA, the hardware overhead would be smaller. Then,based on NSGA-Ⅱthe multi-objective optimizing design for system-on-a-chip (SoC)is also proposed. With the establishing of an optimization model,some valuable two-dimensional test schemes were obtained, by the experimention of some ITC'02 benchmark circuits, proving that the multi-objective genetic algorithm is effective on the test design for SoC. As a creative research, these achievements are valuable and important in the development of SoC.

英文关键词: built-in self-test;genetic algorithm;multi-objective optimizing;NSGA-ⅡSoC

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
8+阅读 · 2021年6月19日
专知会员服务
16+阅读 · 2021年5月13日
【CVPR2021】群体协同学习在共显著目标检测中的应用
专知会员服务
17+阅读 · 2021年4月6日
自动驾驶软件测试技术研究综述
专知会员服务
57+阅读 · 2021年2月19日
专知会员服务
44+阅读 · 2020年9月3日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
WebGL 动画工业化探索与实践
InfoQ
0+阅读 · 2022年3月30日
Sampling-Argmax:用重参数技巧优化Soft-Argmax
极市平台
2+阅读 · 2022年2月17日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
CenterNet:目标即点(代码已开源)
极市平台
25+阅读 · 2019年5月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
【经典书】凸优化:算法与复杂度,130页pdf
专知会员服务
80+阅读 · 2021年11月16日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
8+阅读 · 2021年6月19日
专知会员服务
16+阅读 · 2021年5月13日
【CVPR2021】群体协同学习在共显著目标检测中的应用
专知会员服务
17+阅读 · 2021年4月6日
自动驾驶软件测试技术研究综述
专知会员服务
57+阅读 · 2021年2月19日
专知会员服务
44+阅读 · 2020年9月3日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
相关资讯
WebGL 动画工业化探索与实践
InfoQ
0+阅读 · 2022年3月30日
Sampling-Argmax:用重参数技巧优化Soft-Argmax
极市平台
2+阅读 · 2022年2月17日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
CenterNet:目标即点(代码已开源)
极市平台
25+阅读 · 2019年5月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员