This paper discusses the approximate distributions of eigenvalues of a singular Wishart matrix. We give the approximate joint density of eigenvalues by Laplace approximation for the hyper-geometric functions of matrix arguments. Furthermore, we show that the distribution of each eigenvalue can be approximated by the chi-square distribution with varying degrees of freedom when the population eigenvalues are infinitely dispersed. The derived result is applied to testing the equality of eigenvalues in two populations
翻译:暂无翻译