项目名称: 条斑紫菜叶状营养体细胞向精子囊生殖细胞分化的机制
项目编号: No.41476140
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 天文学、地球科学
项目作者: 牛建峰
作者单位: 中国科学院海洋研究所
项目金额: 84万元
中文摘要: 性别分化是发育生物学中重要的科学问题之一,恰当的实验材料的选择是促进此课题取得进展的重要因素。条斑紫菜因其叶状配子体由单层细胞组成,大部分精子囊细胞分布在其边缘,从营养细胞向性细胞的分化过程相当于高等植物减数分裂后子细胞的后续发育过程,所以是研究营养细胞向性细胞分化发育过程这一重要科学问题的理想材料。本项目拟对实验室受控条件培养下的条斑紫菜叶状体精子囊细胞分化发育过程进行显微观察,记录各典型分化阶段的细胞形态变化及相应光合生理活性的改变;分别采用转录组和蛋白质组学的方法,对各典型分化阶段的细胞进行基因差异表达的研究;筛选可能参与或控制性细胞分化的关键蛋白基因,克隆全长基因序列;在此基础上,对某些关键蛋白在性细胞分化发育过程中的转录及表达进行定量研究;发掘与目标蛋白相互作用的配体分子,探索条斑紫菜雄性细胞分化发育的分子机制。项目的完成,可对全面认识植物繁殖、发育和调控的本质提供借鉴。
中文关键词: 条斑紫菜;系统发育;性细胞分化;精子囊细胞;分子机制
英文摘要: The sexual differentiation is an important process in biology of development. Such study is benificial from the suitable experimental materials. Since the macroscopic foliage gametophyte of Py. yezoensis is composed of single cell layer and the spermatangium is developed from the vegetative cell and distributed in the edge of the blades. This process is analogous to the development of the microspore to the spermatia in the higher plants. The project will focus on determination of the relationship between cell morphology and photosynthetic parameters during the sexual differentiation. With the assistance of microscope and PAM, the cells at the typical differentiation stages will be sampled, and the gene expression in both transcript level and protein level will be determined. Based on the analysis of the results from transcriptome and mass-spectrum, the potential key proteins which are responding to the sexual differentiation will be screened. Then, the full length genes of the important proteins will be cloned and their expression profiles will be determined through the methods of Real-time PCR and Western-blot during the formation of spermatangium. A certain number of sexual differentiation related moleculars will be obtained through co-immunoprecipitation, which will further do benefits to explain the molecular mechanism of development of spermatia in Py. yezoensis.
英文关键词: Pyropia yezoensis;phylogenetic development;sexual differentiation;spermatangium;molecular mechanism