Generalized mutual information (GMI) is used to compute achievable rates for fading channels with various types of channel state information at the transmitter (CSIT) and receiver (CSIR). The GMI is based on variations of auxiliary channels with additive white Gaussian noise (AWGN). One variation is for receivers unaware of the CSIT where adaptive codewords, or Shannon strategies, achieve capacity. The GMI is then based on auxiliary channels with inputs that are linear functions of the adaptive codewords' symbols. For scalar channels, the input that maximizes the GMI is shown to give a conventional codebook but where the amplitude and phase of each symbol is modified based on the CSIT. A second variation partitions the channel output alphabet and has a different auxiliary channel for each subset of the partition. The partitioning helps to determine the capacity scaling at high signal to noise ratios. A class of power control policies is described for partial CSIR, including a truncated minimum mean square error policy for full CSIT and quadratic waterfilling if the CSIT is known at the receiver. Several examples for fading channels with AWGN illustrate the theory, with a focus on on-off fading and Rayleigh fading. The capacity results are generalized to block fading channels with in-block feedback, including capacity expressions based on mutual information and directed information.


翻译:通用共同信息(GMI)用于计算通过发射机(CSIT)和接收机(CSIR)的各类频道状态信息来计算可实现的淡化频道速率。GMI基于添加白高斯噪音(AWGN)的辅助频道变异。一种变异是,在适应性代码词或香农战略达到能力的情况下,接收器不知情的CSIT接收器接收器接收器接收器接收器接收器接收器接收器接收器接收器接收器接收器接收器接收器的变异。然后,GMI基于适应性代码符号符号的线性功能输入的辅助频道(GMI)进行淡化频道计算。对于缩放频道,显示使GNI最大化的输入提供了常规代码簿,但每个符号的振动度和阶段根据CSIT进行了修改。第二个变异版本分割了频道输出字母表,为每个分区的每个分组都有不同的辅助频道。一个变异式接收器接收器接收器接收器显示能力,包括以普通化的平方位分析器分析器分析器,并显示以平方位分析器分析结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员