This work proposes Adaptive Facilitated Mutation, a self-adaptive mutation method for Structured Grammatical Evolution (SGE), biologically inspired by the theory of facilitated variation. In SGE, the genotype of individuals contains a list for each non-terminal of the grammar that defines the search space. In our proposed mutation, each individual contains an array with a different, self-adaptive mutation rate for each non-terminal. We also propose Function Grouped Grammars, a grammar design procedure, to enhance the benefits of the proposed mutation. Experiments were conducted on three symbolic regression benchmarks using Probabilistic Structured Grammatical Evolution (PSGE), a variant of SGE. Results show our approach is similar or better when compared with the standard grammar and mutation.
翻译:该研究提出了自适应便利变异方法,用于结构化语法演化 (SGE)。自适应便利变异是受到便利变异理论的生物学中的启发而提出的。在 SGE 中,个体的基因型包含语法的每个非终止符号的列表,以定义搜索空间。我们提出的变异方法是,每个个体包含一个数组,其中包含每个非终止符号的不同自适应突变率。我们还提出了函数分组语法,这是一种语法设计程序,以增强所提出的变异的优势。我们在三个符号回归基准数据集上使用概率结构化语法演化 (PSGE),这是 SGE 的变体。结果表明,与标准语法和变异相比,我们的方法更为相似或更优。