Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image super-resolution (SR) under complex scenes. In this paper, we present a heterogeneous group SR CNN (HGSRCNN) via leveraging structure information of different types to obtain a high-quality image. Specifically, each heterogeneous group block (HGB) of HGSRCNN uses a heterogeneous architecture containing a symmetric group convolutional block and a complementary convolutional block in a parallel way to enhance internal and external relations of different channels for facilitating richer low-frequency structure information of different types. To prevent appearance of obtained redundant features, a refinement block with signal enhancements in a serial way is designed to filter useless information. To prevent loss of original information, a multi-level enhancement mechanism guides a CNN to achieve a symmetric architecture for promoting expressive ability of HGSRCNN. Besides, a parallel up-sampling mechanism is developed to train a blind SR model. Extensive experiments illustrate that the proposed HGSRCNN has obtained excellent SR performance in terms of both quantitative and qualitative analysis. Codes can be accessed at https://github.com/hellloxiaotian/HGSRCNN.
翻译:然而,这些CNN往往在复杂的场景下对图像超分辨率(SR)的图像超分辨率(SR)缺乏强健性。在本文中,我们通过利用不同类型的结构信息获取高质量图像,呈现出一个多样化的SRCNN(HGSRCNN)群集(HGSRCNNN),具体地说,HGSRCNN的每个混杂群群块(HGB)使用一个包含一个对称群体共振块的混合结构以及一个互补的共振块,平行地加强不同渠道的内部和外部关系,以促进不同类型更富的低频结构信息的内外部关系。为了防止出现多余的功能,一个以序列方式增强信号的精细块旨在过滤无效信息。为了防止原始信息的丢失,一个多层次的增强机制指导CNNC实现一个促进HGSRCNN的直观能力的对称结构。此外,还开发了一个平行的抽样机制,以培训盲人的SR模式。广泛的实验表明,拟议的HRCNNNN在定量和定性分析方面都取得了出色的SR性能/HNGS/NGS。