Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances in self-supervised deep learning. Learning minimizes a simple layer-specific loss function and does not need to back-propagate error signals within or between layers. Instead, weight updates follow a local, Hebbian, learning rule that only depends on pre- and post-synaptic neuronal activity, predictive dendritic input and widely broadcasted modulation factors which are identical for large groups of neurons. The learning rule applies contrastive predictive learning to a causal, biological setting using saccades (i.e. rapid shifts in gaze direction). We find that networks trained with this self-supervised and local rule build deep hierarchical representations of images, speech and video.


翻译:大脑的学习不易理解,而学习规则尊重生物限制,但产生深层次的等级代表,仍然未知。在这里,我们提出一个学习规则,从神经科学和自我监督的深层学习的最新进展中汲取灵感。学习最大限度地减少了简单的层次损失功能,不需要在层内或层间反向传播错误信号。相反,体重更新遵循本地的Hebbian的学习规则,该规则仅取决于合成前和后神经活动、预测的登层输入和广泛广播的调节因素,这些因素对大群神经人来说是相同的。学习规则将对比式预测学习运用于一个因果生物环境,使用Scathdes(即快速转向瞄准方向 ) 。 我们发现,接受这种自我监管和本地规则培训的网络可以建立对图像、言语和视频的深层次描述。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员