Potential Drug-Drug Interaction(DDI) occurring while treating complex or co-existing diseases with drug combinations may cause changes in drugs' pharmacological activity. Therefore, DDI prediction has been an important task in the medical healthy machine learning community. Graph-based learning methods have recently aroused widespread interest and are proved to be a priority for this task. However, these methods are often limited to exploiting the inter-view drug molecular structure and ignoring the drug's intra-view interaction relationship, vital to capturing the complex DDI patterns. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brevity, to capture inter-view molecule structure and intra-view interactions between molecules simultaneously. MIRACLE treats a DDI network as a multi-view graph where each node in the interaction graph itself is a drug molecular graph instance. We use GCN to encode DDI relationships and a bond-aware attentive message propagating method to capture drug molecular structure information in the MIRACLE learning stage. Also, we propose a novel unsupervised contrastive learning component to balance and integrate the multi-view information. Comprehensive experiments on multiple real datasets show that MIRACLE outperforms the state-of-the-art DDI prediction models consistently.


翻译:在治疗复杂或共同存在的疾病和药物组合时出现的潜在的药物-药物互动关系(DDI)可能会改变药物-药物互动活动。因此,DDI预测是医学健康机器学习界的一项重要任务。基于图表的学习方法最近引起了广泛的兴趣,并被证明是这项任务的一个优先事项。然而,这些方法往往局限于利用不同观点药物分子结构,忽视药物内部互动关系,这对捕捉复杂的DDI模式至关重要。这项研究为药物-药物互动预测提供了一种新的方法,多视图图反比代表性学习,为简便性提供了MIRACLE,以同时捕捉到双视分子结构和各分子之间的视觉互动。MIRACLE把DDI网络当作一个多视角图,其中互动图中每个节点本身就是一个药物分子图象实例。我们使用GCN来编码DDI关系,并使用一种感知债券-感知信息传播方法,在MIRACLE学习阶段收集药物-药物分子结构信息。此外,我们提议采用新颖的、不严密的多视角的多视角模型,以显示长期的多视角数据结构。我们建议采用新的、综合的多角度的模型,以显示多角度的多视角分析模型,以显示多面的模型。

5
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
专知会员服务
44+阅读 · 2020年10月31日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
专知会员服务
44+阅读 · 2020年10月31日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员