Super-Resolution from a single motion Blurred image (SRB) is a severely ill-posed problem due to the joint degradation of motion blurs and low spatial resolution. In this paper, we employ events to alleviate the burden of SRB and propose an Event-enhanced SRB (E-SRB) algorithm, which can generate a sequence of sharp and clear images with High Resolution (HR) from a single blurry image with Low Resolution (LR). To achieve this end, we formulate an event-enhanced degeneration model to consider the low spatial resolution, motion blurs, and event noises simultaneously. We then build an event-enhanced Sparse Learning Network (eSL-Net++) upon a dual sparse learning scheme where both events and intensity frames are modeled with sparse representations. Furthermore, we propose an event shuffle-and-merge scheme to extend the single-frame SRB to the sequence-frame SRB without any additional training process. Experimental results on synthetic and real-world datasets show that the proposed eSL-Net++ outperforms state-of-the-art methods by a large margin. Datasets, codes, and more results are available at https://github.com/ShinyWang33/eSL-Net-Plusplus.
翻译:超级解析来自单一运动的模糊图像(SRB)是一个严重错误的问题,原因是运动模糊和低空间分辨率的共同降解。 在本文中,我们利用活动来减轻SRB的负担,并提议一个事件强化的SRB(E-SRB)算法,该算法可以产生一连串高清晰的图像,从单一的模糊和低分辨率的图像(HR)产生一连串的清晰和高清晰的图像。为了达到这一目的,我们设计了一个事件强化的退化模型,以同时考虑低空间分辨率、运动模糊和事件噪音。然后,我们在一个双重稀疏的学习计划上建立一个事件强化的斯马瑟学习网络(eSL-Net++++),在这个计划上,事件和强度框架的模型都以稀薄的表示方式建模。此外,我们提出一个事件休整和合并计划,将单一框架的SRAB扩大到序列框架,而无需任何额外的培训程序。合成和现实世界数据集的实验结果显示,拟议的eSL-Net+++ 超越了州-ab-art 方法。 通过一个大的基/Mas-W smabs slair set sad sal sal sal set.</s>