项目名称: 一维四氧化三铁/绝缘体粒子的界面控制合成,结构解析与磁电输运性能

项目编号: No.20801016

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 化学工业

项目作者: 王敬平

作者单位: 哈尔滨工程大学

项目金额: 18万元

中文摘要: 项目计划的主要研究内容是半金属四氧化三铁纳米材料的合成及电磁性能。通过项目执行,主要完成的工作,一是合成了表面包覆的四氧化三铁,并研究了电磁性能;二是在水溶液中,通过简单的络合共沉淀法合成了高品质的四氧化三铁纳米材料,合成的四氧化三铁不仅具有可控的形态,而且具有好的结晶度;三是对合成样品的电磁性能进行分析研究,合成的四氧化三铁纳米材料具有高的饱和磁化强度,在四氧化三铁粉体材料中,得到了较高的室温低场隧道磁阻,观察到高磁化强度和高的室温低场磁阻的一个重要原因是产物四氧化三铁高的结晶度。除此之外,研究了磁性四氧化三铁对被重金属污染的水体的去污能力。结果显示合成的纳米四氧化三铁不仅具有好的去除污染金属离子的能力,而且非常易于回收。

中文关键词: 四氧化三铁;半金属;磁阻;共沉淀

英文摘要: The major contents are the synthesis of half-metal magnetite and invstigation on the electro-magnetic properties for the project. up to now, the expected works have been completed. firstly, coated magnetite particles were prepared. high low-field tunneling magnetoresistance was observed in the coated magnetite compact. secondly, magnetite nanomaterials with well crystallinity and high saturation magentization have been successfully synthesized by a simple, low-temperature and environmentally friendly aqueous method without any surfactant and calcination treatment. thirdly, The magnetic and electrical properties of the Fe3O4 nanomateials were investigated. The sample showed a ferrimagnetic behaviour with the high saturation magnetization at room temperature and high low field magnetoresistance, which were attributed to the well cystallinity. In addition, the as-prepared Fe3O4 peony materials are used as adsorbent in waste water treatment, and exhibit an excellent ability to remove the Cr (VI) pollutant from aqueous solution. The Fe3O4 peony sample demonstrates approximate 5.24 mg g-1 of adsorption capacity towards Cr (VI) ions, compared with the values of commercial and reported adsorbents

英文关键词: magnetite; half-metal; magneoresistance; coprecipitation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年8月22日
专知会员服务
32+阅读 · 2021年8月7日
专知会员服务
29+阅读 · 2021年2月19日
专知会员服务
29+阅读 · 2020年8月8日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
29+阅读 · 2020年4月6日
专知会员服务
20+阅读 · 2020年3月29日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
40+阅读 · 2022年2月24日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
15+阅读 · 2020年2月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员