We propose a collocation method based on multivariate polynomial splines over triangulation or tetrahedralization for the numerical solution of partial differential equations. We start with a detailed explanation of the method for the Poisson equation and then extend the study to the second-order elliptic PDE in non-divergence form. We shall show that the numerical solution can approximate the exact PDE solution very well. Then we present a large amount of numerical experimental results to demonstrate the performance of the method over the 2D and 3D settings. In addition, we present a comparison with the existing multivariate spline methods in \cite{ALW06} and \cite{LW17} to show that the new method produces a similar and sometimes more accurate approximation in a more efficient fashion.
翻译:我们提出了一种基于三角剖分或四面体剖分的多元多项式样条余项方法,用于求解偏微分方程的数值解。我们首先详细说明了该方法在泊松方程中的应用,然后将研究扩展到非散度形式的二阶椭圆型PDE。我们将展示数值解可以非常好地近似实际的PDE解。然后,我们展示了大量的数值实验结果,以展示该方法在2D和3D环境中的性能。此外,我们与\cite{ALW06}和\cite{LW17}中的现有多元样条方法进行比较,以表明该新方法可以以更高效的方式产生相似甚至更准确的近似解。