Existing neural network verifiers compute a proof that each input is handled correctly under a given perturbation by propagating a symbolic abstraction of reachable values at each layer. This process is repeated from scratch independently for each input (e.g., image) and perturbation (e.g., rotation), leading to an expensive overall proof effort when handling an entire dataset. In this work, we introduce a new method for reducing this verification cost without losing precision based on a key insight that abstractions obtained at intermediate layers for different inputs and perturbations can overlap or contain each other. Leveraging our insight, we introduce the general concept of shared certificates, enabling proof effort reuse across multiple inputs to reduce overall verification costs. We perform an extensive experimental evaluation to demonstrate the effectiveness of shared certificates in reducing the verification cost on a range of datasets and attack specifications on image classifiers including the popular patch and geometric perturbations. We release our implementation at https://github.com/eth-sri/proof-sharing.
翻译:现有的神经网络核查员计算出一个证据,即每个输入在一定扰动下得到正确处理,方法是通过在每一层传播可达值的象征性抽象抽象信息,在每个输入(如图像)和扰动(如旋转)中,这一过程从头到尾都重复,导致处理整个数据集的总体举证工作耗资巨大。在这项工作中,我们引入了一种新的方法来降低这种核查费用,同时不失去精确性,其依据是关键见解,即不同输入和扰动在中间层取得的抽取可以重叠或相互约束。我们利用我们的洞察力,引入了共享证书的一般概念,使得在多个输入中能够重新利用证据,以减少总体核查费用。我们进行了广泛的实验性评估,以证明共享证书在降低一系列数据集的核查费用和图像分类器(包括流行的补丁和几何扰动)攻击性规格方面的有效性。我们在https://github.com/eth-sri/subir-shared)上公布了我们的执行情况。