Existing studies tend tofocus onmodel modifications and integration with higher accuracy, which improve performance but also carry huge computational costs, resulting in longer detection times. Inmedical imaging, the use of time is extremely sensitive. And at present most of the semantic segmentation models have encoder-decoder structure or double branch structure. Their several times of the pooling use with high-level semantic information extraction operation cause information loss although there si a reverse pooling or other similar action to restore information loss of pooling operation. In addition, we notice that visual attention mechanism has superior performance on a variety of tasks. Given this, this paper proposes non-pooling network(NPNet), non-pooling commendably reduces the loss of information and attention enhancement m o d u l e ( A M ) effectively increases the weight of useful information. The method greatly reduces the number of parametersand computation costs by the shallow neural network structure. We evaluate the semantic segmentation model of our NPNet on three benchmark datasets comparing w i t h multiple current state-of-the-art(SOTA) models, and the implementation results show thatour NPNetachieves SOTA performance, with an excellent balance between accuracyand speed.
翻译:现有研究倾向于以更加精确的模型修改和集成为重点,这些改进和集成提高了性能,但也带来了巨大的计算成本,从而导致探测时间的延长。在医学成像中,时间的使用极为敏感。目前,大多数语系分解模型都有编码脱coder结构或双分支结构。这些模型与高级语系信息提取作业合用数倍于高层次语系脱coder结构或双分支结构,造成信息损失,尽管有反向集合或类似行动,以恢复集合作业的信息损失。此外,我们注意到视觉关注机制在各种任务方面表现优异。鉴于此,本文件提议非集合网络(NPNet),不汇集时间非常值得称赞地减少信息损失和注意力增强 m o d u e (A M), 有效提高了有用信息的权重。这种方法大大减少了浅神经网络结构参数和计算成本的数量。我们评估了我们的NPNet网络在三个基准数据集上对当前多种状态(SOTA)模型进行比较的语系分级模型的语系分解模式。以及执行结果显示,SONETA和精确度之间的性能与精确度十分平衡。