Image restoration is a long-standing low-level vision problem, e.g., deblurring and deraining. In the process of image restoration, it is necessary to consider not only the spatial details and contextual information of restoration to ensure the quality, but also the system complexity. Although many methods have been able to guarantee the quality of image restoration, the system complexity of the state-of-the-art (SOTA) methods is increasing as well. Motivated by this, we present a mixed hierarchy network that can balance these competing goals. Our main proposal is a mixed hierarchy architecture, that progressively recovers contextual information and spatial details from degraded images while we design intra-blocks to reduce system complexity. Specifically, our model first learns the contextual information using encoder-decoder architectures, and then combines them with high-resolution branches that preserve spatial detail. In order to reduce the system complexity of this architecture for convenient analysis and comparison, we replace or remove the nonlinear activation function with multiplication and use a simple network structure. In addition, we replace spatial convolution with global self-attention for the middle block of encoder-decoder. The resulting tightly interlinked hierarchy architecture, named as MHNet, delivers strong performance gains on several image restoration tasks, including image deraining, and deblurring.


翻译:图像恢复是一个长期存在的低水平图像问题,例如,变形和脱线。在图像恢复过程中,不仅有必要考虑恢复的空间细节和背景信息,以确保质量,而且有必要考虑系统复杂性。虽然许多方法都能够保证图像恢复的质量,但最先进(SOTA)方法的系统复杂性也在增加。受此驱动,我们呈现了一个能够平衡这些相互竞争的目标的混合等级网络。我们的主要提议是一个混合的等级结构,它从退化图像中逐步恢复背景信息和空间细节,同时我们设计内部块以降低系统复杂性。具体地说,我们的模型首先利用编码-解码结构学习背景信息,然后将其与保存空间细节的高分辨率分支结合起来。为了降低这一结构的系统复杂性,以便进行方便的分析与比较,我们用一个简单的网络结构来取代或取消非线性激活功能。此外,我们用一个混合结构来取代空间变异,以全球自留,而我们设计了内部结构来降低系统复杂性。具体地,我们的模型首先使用编码-解码结构来学习背景信息,然后将这些背景信息与高分辨率分解图像结构。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员