Deep Reinforcement Learning (DRL) and Deep Multi-agent Reinforcement Learning (MARL) have achieved significant successes across a wide range of domains, including game AI, autonomous vehicles, robotics, and so on. However, DRL and deep MARL agents are widely known to be sample inefficient that millions of interactions are usually needed even for relatively simple problem settings, thus preventing the wide application and deployment in real-industry scenarios. One bottleneck challenge behind is the well-known exploration problem, i.e., how efficiently exploring the environment and collecting informative experiences that could benefit policy learning towards the optimal ones. This problem becomes more challenging in complex environments with sparse rewards, noisy distractions, long horizons, and non-stationary co-learners. In this paper, we conduct a comprehensive survey on existing exploration methods for both single-agent and multi-agent RL. We start the survey by identifying several key challenges to efficient exploration. Beyond the above two main branches, we also include other notable exploration methods with different ideas and techniques. In addition to algorithmic analysis, we provide a comprehensive and unified empirical comparison of different exploration methods for DRL on a set of commonly used benchmarks. According to our algorithmic and empirical investigation, we finally summarize the open problems of exploration in DRL and deep MARL and point out a few future directions.


翻译:深强化学习(DRL)和深多剂强化学习(MARL)等一系列领域取得了重大成功,但众所周知,DRL和深MARL代理商的抽样效率低下,即使对于相对简单的问题环境,通常也需要数百万个互动,从而防止了在现实工业情景中的广泛应用和部署。一个瓶颈挑战是众所周知的勘探问题,即如何有效地探索环境和收集有助于政策学习的最佳方法的信息经验。在报酬稀少、噪音分散、视野长、非常态共读器等复杂环境中,这个问题变得更具有挑战性。在本文中,我们对单剂和多剂RL的现有勘探方法进行了全面调查,我们首先查明了有效勘探面临的几个关键挑战。除了上述两个主要分支外,我们还包括其它有不同想法和技术的显著探索方法。除了算法分析外,我们还对不同探索方法的不同方法进行了一些全面和统一的实证比较,这些方法涉及我们最终使用的共同探索方向和MARL基准的公开分析。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员