In this paper, we consider a challenging but realistic continual learning (CL) problem, Few-Shot Continual Active Learning (FoCAL), where a CL agent is provided with unlabeled data for a new or a previously learned task in each increment and the agent only has limited labeling budget available. Towards this, we build on the continual learning and active learning literature and develop a framework that can allow a CL agent to continually learn new object classes from a few labeled training examples. Our framework represents each object class using a uniform Gaussian mixture model (GMM) and uses pseudo-rehearsal to mitigate catastrophic forgetting. The framework also uses uncertainty measures on the Gaussian representations of the previously learned classes to find the most informative samples to be labeled in an increment. We evaluate our approach on the CORe-50 dataset and on a real humanoid robot for the object classification task. The results show that our approach not only produces state-of-the-art results on the dataset but also allows a real robot to continually learn unseen objects in a real environment with limited labeling supervision provided by its user.
翻译:在本文中,我们考虑到一个具有挑战性但现实的持续学习(CL)问题,即微小的连续学习(FoCAL)问题,即向CL代理机构提供未贴标签的数据,用于每个递增中的新任务或以前学到的任务,而代理机构只有有限的标签预算。为此,我们以不断学习和积极学习的文献为基础,并制定一个框架,使CL代理机构能够不断从几个有标签的培训实例中学习新的对象类别。我们的框架代表每个对象类别,使用统一的Gaussian混合物模型(GMM),并使用假排练来减轻灾难性的遗忘。这个框架还利用高斯人对以前学过的课程的展示的不确定性措施,以寻找在递增中贴上最丰富的信息样本。我们评估了我们关于CORE-50数据集的方法和关于物体分类任务的真正人类机器人的方法。结果显示,我们的方法不仅产生数据集上的最新结果,而且还允许真正的机器人在现实环境中不断学习看不见的物体,用户提供的标签监督有限。