The Zero-Shot Learning (ZSL) task attempts to learn concepts without any labeled data. Unlike traditional classification/detection tasks, the evaluation environment is provided unseen classes never encountered during training. As such, it remains both challenging, and promising on a variety of fronts, including unsupervised concept learning, domain adaptation, and dataset drift detection. Recently, there have been a variety of approaches towards solving ZSL, including improved metric learning methods, transfer learning, combinations of semantic and image domains using, e.g. word vectors, and generative models to model the latent space of known classes to classify unseen classes. We find many approaches require intensive training augmentation with attributes or features that may be commonly unavailable (attribute-based learning) or susceptible to adversarial attacks (generative learning). We propose combining approaches from the related person re-identification task for ZSL, with key modifications to ensure sufficiently improved performance in the ZSL setting without the need for feature or training dataset augmentation. We are able to achieve state-of-the-art performance on the CUB200 and Cars196 datasets in the ZSL setting compared to recent works, with NMI (normalized mutual inference) of 63.27 and top-1 of 61.04 for CUB200, and NMI 66.03 with top-1 82.75% in Cars196. We also show state-of-the-art results in the Generalized Zero-Shot Learning (GZSL) setting, with Harmonic Mean R-1 of 66.14% on the CUB200 dataset.


翻译:61. 与传统的分类/检测任务不同的是,评估环境提供了在培训期间从未遇到过的隐蔽课程。因此,评估环境仍然具有挑战性,而且在许多战线上都有希望,包括不受监督的概念学习、域适应和数据集漂移探测。最近,在解决 ZSL 方面采取了各种办法,包括改进衡量学习方法、转移学习、将语义和图像域结合起来而不使用任何标签数据。与传统的分类/检测任务不同,我们发现许多办法都需要强化培训,其属性或特征可能普遍得不到(基于属性的学习)或容易遭到对抗性攻击(基因学习)。我们建议将相关人员为 ZSL 重新定位任务采用的方法结合起来,同时进行重大修改,以确保充分改进ZSL 环境的性能,而不需要特征或培训数据集增强。 我们有能力在CUB200和Cars196类课的潜在空间中实现最先进的性能表现。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2021年2月15日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
38+阅读 · 2020年3月10日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
17+阅读 · 2021年2月15日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
38+阅读 · 2020年3月10日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
10+阅读 · 2017年7月4日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员