Fairness and robustness play vital roles in trustworthy machine learning. Observing safety-critical needs in various annotation-expensive vision applications, we introduce a novel learning framework, Fair Robust Active Learning (FRAL), generalizing conventional active learning to fair and adversarial robust scenarios. This framework allows us to achieve standard and robust minimax fairness with limited acquired labels. In FRAL, we then observe existing fairness-aware data selection strategies suffer from either ineffectiveness under severe data imbalance or inefficiency due to huge computations of adversarial training. To address these two problems, we develop a novel Joint INconsistency (JIN) method exploiting prediction inconsistencies between benign and adversarial inputs as well as between standard and robust models. These two inconsistencies can be used to identify potential fairness gains and data imbalance mitigations. Thus, by performing label acquisition with our inconsistency-based ranking metrics, we can alleviate the class imbalance issue and enhance minimax fairness with limited computation. Extensive experiments on diverse datasets and sensitive groups demonstrate that our method obtains the best results in standard and robust fairness under white-box PGD attacks compared with existing active data selection baselines.


翻译:公平和稳健性在可信赖的机器学习中发挥着关键作用。 观察各种说明-昂贵的视觉应用中的安全关键需求,我们引入了一种新的学习框架,即公平强力积极学习(FRAL),将常规积极学习推广到公平和对抗性强势情景中。这个框架使我们能够在获得的标签有限的情况下,实现标准和稳健的小型公平。在FRAL中,我们观察现有的公平数据选择战略,在数据严重失衡或由于大量计算对抗性培训而效率低下的情况下,要么是无效的。为了解决这两个问题,我们开发了一种新的联合不一致方法,利用良性投入和对抗性投入之间以及标准和稳健模型之间的预测不一致。这两个不一致之处可用于确定潜在的公平收益和数据不平衡的缓解措施。因此,通过利用基于不一致的排名指标获取标签,我们可以缓解阶级不平衡问题,并通过有限的计算提高微缩缩性公平性。对多种数据集和敏感群体进行的广泛实验表明,与现有的积极数据选择基线相比,我们在白箱PGD攻击下的标准和稳健的公平性攻击下取得最佳结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月16日
Arxiv
0+阅读 · 2023年1月15日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员