Ordinal pattern dependence is a multivariate dependence measure based on the co-movement of two time series. In strong connection to ordinal time series analysis, the ordinal information is taken into account to derive robust results on the dependence between the two processes. This article deals with ordinal pattern dependence for long-range dependent time series including mixed cases of short- and long-range dependence. We investigate the limit distributions for estimators of ordinal pattern dependence. In doing so we point out the differences that arise for the underlying time series having different dependence structures. Depending on these assumptions, central and non-central limit theorems are proven. The limit distributions for the latter ones can be included in the class of multivariate Rosenblatt processes. Finally, a simulation study is provided to illustrate our theoretical findings.
翻译:常态依赖性是一种基于两个时间序列同时移动的多变量依赖性措施。 在与正态时间序列分析密切关联的情况下,正态信息被考虑在内,以获得两个过程之间依赖性的可靠结果。 本条涉及长距离依赖性时间序列的常态依赖性, 包括短距离和长距离依赖性的混合情况。 我们调查对常态依赖性估计者的限值分布。 在这样做时, 我们指出具有不同依赖性结构的基本时间序列的差异。 根据这些假设, 中央和非中央限值理论得到证明。 后一种假设的限值分布可以包括在多变量罗森布拉特进程类别中。 最后, 提供模拟研究, 以说明我们的理论结论 。