Stochastic models of interacting populations have crucial roles in scientific fields such as epidemiology and ecology, yet the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data (e.g. \cite{bjornstad2001noisy}). A previous theory on time-homogeneous dynamics over a single arrow by \cite{breto2011compound} showed how gamma white noise could be used to construct certain over-dispersed Markov chains, leading to widely used models (e.g. \cite{breto2009time,he2010plug}). In this paper, we define systemic infinitesimal over-dispersion, developing theory and methodology for general time-inhomogeneous stochastic graphical models. Our approach, based on Dirichlet noise, leads to a new class of Markov models over general direct graphs. It is compatible with modern likelihood-based inference methodologies (e.g. \cite{ionides2006inference,ionides2015inference,king2008inapparent}) and therefore we can assess how well the new models fit data. We demonstrate our methodology on a widely analyzed measles dataset, adding Dirichlet noise to a classical SEIR (Susceptible-Exposed-Infected-Recovered) model. We find that the proposed methodology has higher log-likelihood than the gamma white noise approach, and the resulting parameter estimations provide new insights into the over-dispersion of this biological system.
翻译:互动人群的物理模型在流行病学和生态学等科学领域具有关键作用,然而,将普通差异方程式模型扩展至Markov链条的标准方法在中差关系上没有足够的灵活性来匹配数据(例如,\cite{bjjornstad2001noisy})。先前关于对单一箭头使用时间-共性动态的理论(cite{breto2011commound})表明,伽马白噪音可以如何用于构建某些超分散的Markov链,从而导致广泛使用的模型(例如,\cite{breto2009time,he2010plug})。在本文中,我们定义了系统性的极度超分散关系,为一般时间-不均匀的随机图形模型开发了理论和方法。我们基于diriclet噪音的这一方法,导致在一般直径模型上形成一个新的马可变模型。我们所选择的概率估算方法(例如,crediference)与基于现代概率的估算方法相兼容,从而导致广泛使用的模型(例如,creditiondeference) (ciondeference) (creditiondeferenceDeference),Oliferencedeference-deference-deference-deference-deference-deference) (我们所拟议的系统可以广泛地评估了一个新的数据方法,我们如何可以提供新的系统。