As with the advancement of geographical information systems, non-Gaussian spatial data sets are getting larger and more diverse. This study develops a general framework for fast and flexible non-Gaussian regression, especially for spatial/spatiotemporal modeling. The developed model, termed the compositionally-warped additive mixed model (CAMM), combines an additive mixed model (AMM) and the compositionally-warped Gaussian process to model a wide variety of non-Gaussian continuous data including spatial and other effects. A specific advantage of the proposed CAMM is that it requires no explicit assumption of data distribution unlike existing AMMs. Monte Carlo experiments show the estimation accuracy and computational efficiency of CAMM for modeling non-Gaussian data including fat-tailed and/or skewed distributions. Finally, the model is applied to crime data to examine the empirical performance of the regression analysis and prediction. The result shows that CAMM provides intuitively reasonable coefficient estimates and outperforms AMM in terms of prediction accuracy. CAMM is verified to be a fast and flexible model that potentially covers a wide variety of non-Gaussian data modeling. The proposed approach is implemented in an R package spmoran.


翻译:随着地理信息系统的发展,非加西文空间数据集正在扩大和多样化,随着地理信息系统的发展,非加西文空间数据集正在扩大和多样化,该研究为非加西文快速和灵活的非加西文回归,特别是空间/SPatota-时间模型开发了一个总体框架,开发了一种模型,称为组成扭曲的添加添加剂混合模型(CAMM)和构成扭曲的高西文进程,以模拟广泛的非加西文连续数据,包括空间和其他影响。拟议的卡米姆纳特别好处是,它不需要与现有的AMM不同,明确假设数据分布。蒙特卡洛实验显示CAMM用于非加西文数据模型的估算准确性和计算效率,包括脂肪成型和/或斜度分布。最后,该模型用于犯罪数据,以审查回归分析和预测的经验性绩效。结果显示,卡米纳米纳提供不完全合理的系数估计值,在预测准确性方面超越AMM。卡米纳米纳姆试验被核实为一种快速和灵活的模型,有可能涵盖非加西文一揽子数据的拟议模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员