Linear regression using ordinary least squares (OLS) is a critical part of every statistician's toolkit. In R, this is elegantly implemented via lm() and its related functions. However, the statistical inference output from this suite of functions is based on the assumption that the model is well specified. This assumption is often unrealistic and at best satisfied approximately. In the statistics and econometrics literature, this has long been recognized and a large body of work provides inference for OLS under more practical assumptions. This can be seen as model-free inference. In this paper, we introduce our package maars ("models as approximations") that aims at bringing research on model-free inference to R via a comprehensive workflow. The maars package differs from other packages that also implement variance estimation, such as sandwich, in three key ways. First, all functions in maars follow a consistent grammar and return output in tidy format, with minimal deviation from the typical lm() workflow. Second, maars contains several tools for inference including empirical, multiplier, residual bootstrap, and subsampling, for easy comparison. Third, maars is developed with pedagogy in mind. For this, most of its functions explicitly return the assumptions under which the output is valid. This key innovation makes maars useful in teaching inference under misspecification and also a powerful tool for applied researchers. We hope our default feature of explicitly presenting assumptions will become a de facto standard for most statistical modeling in R.


翻译:使用普通最小平方( OLS) 的线性回归是每个统计家工具包的关键部分 。 在 R 中, 这是通过 lm () 及其相关功能优雅地执行的 。 但是, 这套功能的统计推导输出基于模型非常明确的假设 。 这个假设往往不切实际, 最多可以大致满足 。 在统计和计量经济学文献中, 长期以来人们都认识到这一点, 大量的工作在更实际的假设下为 OLS 提供了精确的推断 。 这可以被视为无模型的推断 。 在本文中, 我们引入了我们的一揽子模型( “ 模型作为近似 ” ), 目的是通过全面的工作流程将无模型推导出的研究带给 R 。 但是, 数学包也与其他软件包不同, 例如三明治, 三种主要方式。 首先, 马拉斯的所有函数都遵循一个一致的语法和返回格式, 与典型的Im( ) 工作流量略有偏离 。 其次, 数学中包含数种推论工具工具, 包括实验、 后期、 和亚程中最精确的精确的排序 。 。 将使得 直判中, 直判的 直判的 。 直判中, 直判的 直判的 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
91+阅读 · 2021年6月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月22日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员